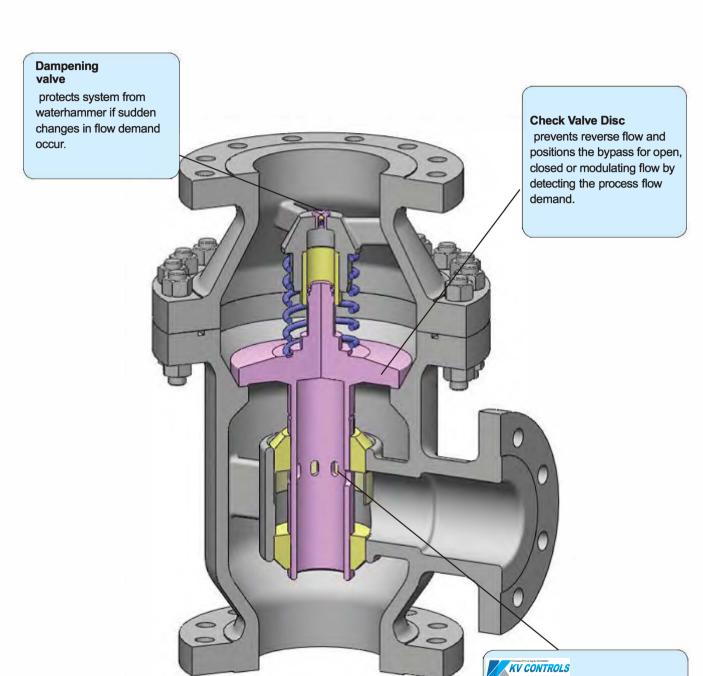


PB-Series Pump Protection

Automatic Recirculation valve

Minimum Flow Protection



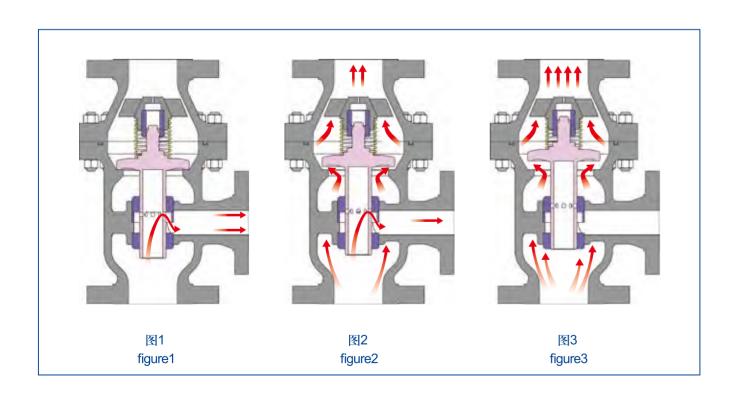
PBH Series

Dampening valve protects system from water hammer if sudden changes in flow demand **Check Valve Disc** occur. prevents reverse flow and positions the bypass for open, closed or modulating flow by detecting the process flow demand. 0

Multiple stage pressure reduction Prevents from flashing/cavitation with integral check valve in bypass.

PBL Series

02


Characterized orifices in the bypass element provides accurate, modulated

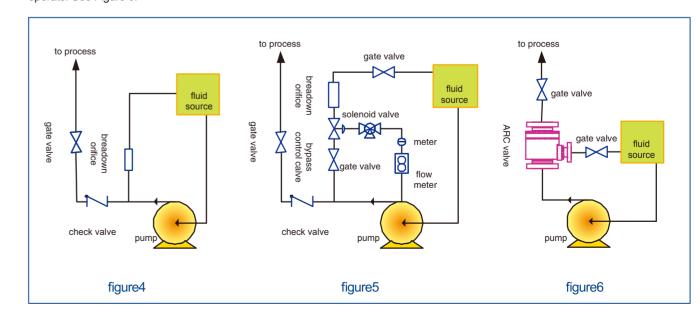
recirculation flow

Automatic recirculation valve mechanism introduced

The heart of the ARC valve is a main flow sensing check valve disc, which is flow sensitive but pressure sensitive. The disc modulates to the demand for process flow while assuring a minimum flow through the pump. This modulating characteristic results in a consistent, stable, and repeatable performance over full pressure range. The disc is shown in the closed position in Figure 1.In this position there is no process flow and the bypass is full open. The valve provides for single phase flow in the bypass eliminating the possibility of flashing or cavitation.; As the disc lifts(Figure 2) in response to an increase in flow to the process, the bypass element which is integral to the disc, closes the bypass flow orifices reducing recirculation flow. Recirculation flow is controlled with disc position. This modulation feature assures that the total of process flow and recirculation flow exceed the minimum flow through the pump as specified by the pump manufacturer; When the disc is full open, as in Figure 3, the bypass is closed.

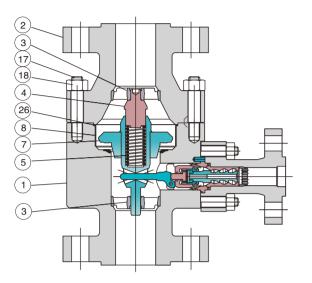
Minumum Flow Protection Methods

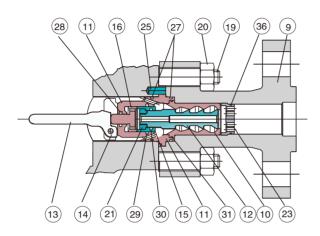
Continuous recirculation valve


The desired minimum flow volume is recirculated regardless of the system demand for fluid. Fixed orifices reduce the pressure before discharging. Continuous recirculating provides reliable pump protection, however, it is very inefficient and costly. The pump and driver must be sized to allow for the additional flow that is recirculating even when the flow demand rate exceeds the required minimum flow. See Figure 4.

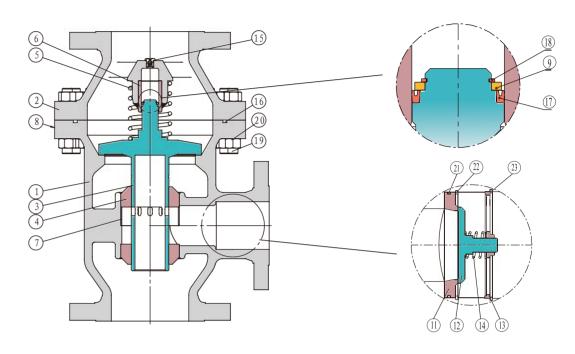
Control Loop System

Recirculating occurs only when the process flow demand drops below the required minimum flow rate. Instrument controlled systems eliminate the inefficient and costly to operate constant recirculating systems. However, the necessary system components; check valve, flow meter, pressure reducing valve and related piping result in a considerable expense to purchase, install and maintain. See Figure 5.


Automatic Recirculation Valve System


The automatic recirculating valve performs all flow sensing, bypass pressure reduction, reverse flow protection and modulating recirculating flow in an integral three port valve. The valve performs the same function of an instrumented system without the multitude of components, piping connections and system design expense. The valve is flow operated and does not require any air or electricity to operate. See Figure 6.

PBH main Dimensions and materials

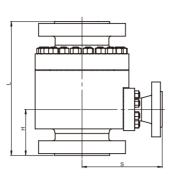


PBH main materials

		Sigr	of materials
Ref.No	Part Name	01	02
1	Body	ASTM A105	ASTM A182 F304
2	Bonnet	ASTM A105	ASTM A182 F304
3	Stem Guide	ASTM A276 304	ASTM A276 304
4	Guide Bolt	ASTM A276 304	ASTM A276 304
5	Spring	ASTM A276 304	ASTM A276 304
6	Name Plate	ASTM A276 304	ASTM A276 304
7	Check Valve	ASTM A276 304	ASTM A276 304
8	Protection Sleeve	ASTM A276 304	ASTM A276 304
9	Bypass Branch	ASTM A105	ASTM A182 F304
10	Vortex Housing	ASTM A564 630	ASTM A564 630
11	Holder	ASTM A564 630	ASTM A564 630
12	Vortex Plug	ASTM A564 630	ASTM A564 630
13	Lever	ASTM A564 630	ASTM A564 630
14	Pivot Pin	ASTM A564 630	ASTM A564 630
15	Vortex Bushing	ASTM A564 630	ASTM A564 630
16	Piston	ASTM A564 630	ASTM A564 630
17	Stud	ASTM A193 B7	ASTM A194 8
18	Hex Nut	ASTM A194 2H	ASTM A193 B8
19	Stud	ASTM A193 B7	ASTM A194 8
20	Hex Nut	ASTM A194 2H	ASTM A193 B8
26	O-Ring	Elastomer	Elastomer
27	O-Ring	Elastomer	Elastomer
28	O-Ring	Elastomer	Elastomer
29	Glide Ring	Elastomer+PTFE	Elastomer+PTFE
30	Glide Ring	Elastomer+PTFE	Elastomer+PTFE
31	Glide Ring	Elastomer+PTFE	Elastomer+PTFE
32	O-Ring	Elastomer	Elastomer

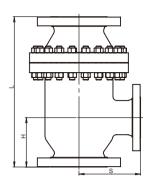
PBL main Dimensions and materials

PBL main materials


		Sign	of materials
Ref.No	Part Name	01	02
1	Body	ASTM A216 WCB	ASTM A351 GR.CF8M
2	Bonnet	ASTM A216 WCB	ASTM A351 GR.CF8M
3	Check Valve	ASTM A276 316	ASTM A276 316
4	Bypass Ring	ASTM A564 630	ASTM A564 630
5	Main Spring	ASTM A276 316	ASTM A276 316
6	Slide Ring	ASTM A564 630	ASTM A564 630
7	Lower Slide Ring	ASTM A564 630	ASTM A564 630
8	Name Plate	ASTM A276 304	ASTM A276 304
9	Baffle	ASTM A276 316	ASTM A276 316
15	Damping Valve	ASTM A276 304	ASTM A276 316
16	O-ring	Elastomer	Elastomer
17	Vari Seal ring	Elastomer	Elastomer
18	Retaining Ring	ASTM A276 316	ASTM A276 316
19	Stud	ASTM A193 B7	ASTM A193 B8
20	Nut	ASTM A194 2H	ASTM A194 8

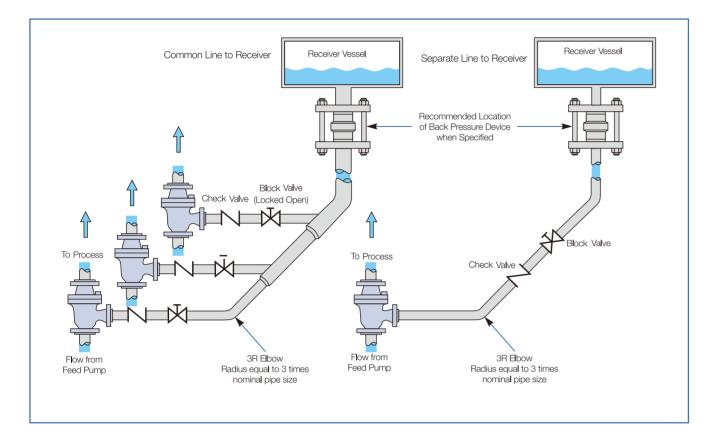
Bypass Options

11	Valve Seat	ASTM A276 316
12	Disc	ASTM A276 316
13	Stem Guide	ASTM A276 316
14	Bypass Spring	ASTM A276 316
21	O-Ring	Elastomer
22	Retaining Ring	ASTM A276 316
23	Retaining Ring	ASTM A276 316

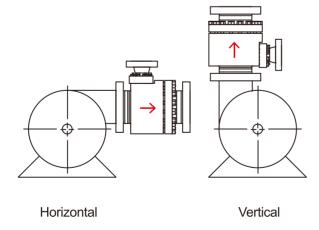


PBH Dimensions , Weights and Flow Ratings

Valve siz	ze						Dim	ensions	mm
Main mm(ln)	Bypass mm(In)	ANSI	Max. Main Flow (M³/h)	Max. Bypass Flow (M³/h)	Bypass Max. Cv	Weight (Kg)	L (mm)	H (mm)	S (mm)
40 (1.5)	25 (1)	600 900 1500	34	14	1.3 1.1 0.9	32 42 57	260 300 310	90 110 120	190 200 215
50 (2)	25 (1)	600 900 1500	50	14	2.7 1.7 1.6	48 76 95	300 340 350	110 130 130	193 203 233
65 (2.5)	40 (1.5)	600 900 1500	75	34	3.5 2.6 2.4	68 88 103	340 380 400	125 140 145	220 230 250
80 (3)	40 (1.5)	600 900 1500	114	34	5.2 4 3.5	100 113 140	380 410 450	140 150 165	240 250 275
100 (4)	50 (2)	600 900 1500	204	57	8.5 5.6 5.2	149 176 222	430 450 520	155 160 190	266 280 300
125 (5)	65 (2.5)	600 900 1500	250	91	11 9.5 6.5	205 272 278	500 525 650	175 185 235	310 310 341
150 (6)	80 (3)	600 900 1500	454	125	14 12 10	375 430 496	550 585 700	190 200 250	335 350 405
200 (8)	100 (4)	600 900 1500	749	204	22 20 16	545 640 786	650 675 850	215 225 295	405 405 475
250 (10)	150 (6)	600 900 1500	999	279	35 25 22	822 1155 1483	800 800 975	270 270 330	520 520 568
300 (12)	150 (6)	600 900 1500	1498	431	55 35 30	1710 1978 2665	1051 1051 1149	360 360 400	649 649 700


PBL Dimensions , Weights and Flow Ratings

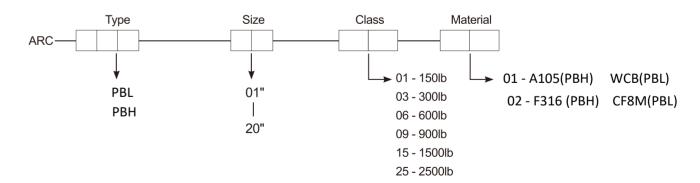
\	/alve Size							Dimen	sions mn	1
Main mm(ln)	Bypass mm(In)	ANSI	Max. Main Flow (M³/h)	(m³/h)	Max CV	Min CV	Weight (Kg)	L (mm)	H (mm)	S (mm)
25 (1)	20 (3/4)	150 300 600	14	8	6.1	0.5	10 15 22	244 244 258	87 87 94	120 120 120
40 (1-12)	20 (3/4)	150 300 600	28	8	6.1	0.5	12 17 22	244 244 258	87 87 94	120 120 145
50 (2)	40 (1-1/2)	150 300 600	60	17	8.5	1.0	18 22 26	278 278 294	101 101 109	140 450 165
80 (3)	50 (2)	150 300 600	114	38	17	2.0	30 42 54	358 393 414	118 130 135	142 153 167
100 (4)	80 (3)	150 300 600	205	73	36.4	3.0	49 72 100	401 462 499	137 158 168	172 185 205
150 (6)	100 (4)	150 300 600	455	148	91	5.0	100 143 206	534 578 636	175 190 206	214 237 259
200 (8)	150 (6)	150 300 600	750	284	169.8	7.0	199 272 354	750 796 856	245 258 275	275 295 320
250 (10)	200 (8)	150 300 600	1250	545	425	25.0	430 610 875	900 950 1100	300 320 365	340 360 414
300 (12)	250 (10)	150 300 600	1650	950	830	42.0	520 790 1300	920 1015 1050	305 340 375	370 400 450
350 (14)	250 (10)	150 300 600		cor	nsult factory			1350 1330 1442	400 420 476	410 450 533
400 (16)	300 (12)	150 300 600		COI	nsult factory	,		1440 1522 1630	475 504 538	525 565 602
450 (18)	350 (14)	150 300 600		cor	nsult factory			1620 1710 1825	535 564 602	590 620 674
500 (20)	400 (16)	150 300 600		cor	nsult factory	,		1800 1885 2012	595 622 664	655 696 744



ARC Valve installation

ARC Valve installation

The valve and its components are selected according to specifications supplied by customers. Any change in pressure, temperature, type of fluid and flow condition, may require modification of valve internals. Please Consult with the factory if the aforementioned occurred.



The installation of the ARC valve can be both Vertical (preferred) and Horizontal. The by-pass flow direction may be any but down when installation is horizontal. ARC valve is normal installed near or on the discharge flange of the centrifugal pump. Flow direction must be as indicated by the arrow stamped into the body.

How to Order

. Main Flow		
		m³/h
Normal		
		m³/h
2. Pump discha	irge pressure	
Normal flow		MPa
Bypass Flow	l	MPa
Shut-Off Pre	essure	MPa
	c Pressure	MPa
	•	
2 Tomporatur		
		C
Normal	= 	•
Normal Maximum .		•
Maximum .		C
Normal Maximum . 4. Liquid		C
Normal Maximum - 4. Liquid Density	SCIIFO	C _kg/cm³ MPa
Normal Maximum . 4. Liquid Density Vapour Pres	ssure	C _kg/cm³ MPa

Valve Code

For Example

300 lbs, 3", CF8M, PBL-03-03-02

Here is a valve with Pressure Class 300Lb, Valve DN 3", material CF8M, so its Valve Model is: PBL-03-03-02